KIKUCHI, Y., HIROTA, E. & MORINO, Y. (1961). Bull. Chem. Soc. Japan, 34, 348.

KOJIMA, S., TSUKADA, K., OGAWA, S. & SHIMAUCHI, A. (1953). J. Chem. Phys. 21, 2237.

- MORINO, Y., MIYAGAWA, I., CHIBA, T. & SHIMOZAWA, T. (1956). J. Chem. Phys. 25, 185.
- MORINO, Y., CHIBA, Ť., SHIMOZAWA, T. & TOYAMA, M. (1958). J. Phys. Soc. Japan, 13, 869.
- MORINO, Y., CHIBA, T., SHIMOZAWA, T., TOYAMA, M. & ITO, K. (1959). *Rev. Univ. des Mines*, 9e Ser. T. XV, 591.
- MORINO, Y. & TOYAMA, M. (1960). J. Phys. Soc. Japan, 15, 288.
- MORINO Y. & TOYAMA, M. (1962). J. Chem. Phys. 35, 1289.
- ROBINSON, H., DEHMELT, H. G. & GORDY, W. (1954). J. Chem. Phys. 22, 511.
- STERNHEIMER, R. M. (1954). Phys. Rev. 95, 736.
- TOYAMA, M. (1959). J. Phys. Soc. Japan, 14, 1727.
- VAN BOMMEL, A. J., STRIJK, B. & BIJVOET, J. M. (1950). Proc. Koninkl. Nederland Akad. Wetenschap, 53, 47.

Acta Cryst. (1963). 16, 134

The Synthesis and Crystal Structures of some Alkaline Earth Titanium and Zirconium Sulfides

By Abraham Clearfield

National Lead Company, Titanium Alloy Division, Niagara Falls, New York, U.S.A.

(Received 26 July 1961 and in revised form 13 April 1962)

Barium titanium sulfide (BaTiS₃) and calcium, strontium and barium zirconium sulfides (CaZrS₃, SrZrS₃ and BaZrS₃) have been synthesized by the reaction of CS₂ with the respective ternary oxides at elevated temperatures. Barium titanium sulfide is hexagonal but its sulfur content decreases with increasing temperature of preparation. This results in a variation of unit cell dimensions from a = 6.752, c = 5.810 Å when prepared at 700 °C. to a = 6.77, c = 5.74 Å when prepared at 1100 °C. BaTiS₃ containing a stoichiometric or near stoichiometric equivalence of sulfur has the barium nickelate structure. As the sulfur content decreases the structure becomes increasingly disordered. BaZrS₃ is orthorhombic with a = 7.037, b = 9.983, c = 7.050 Å and has a distorted perovskite structure orthorhombic unit cells with a = 13.49, b = 9.79, c = 14.23 Å for SrZrS₃ and a = 13.07, b = 9.58, c = 14.05 Å for CaZrS₃.

Introduction

Hahn & Mutschke (1956) prepared SrTiS₃, BaTiS₃ and BaZrS₃ by heating mixtures of the binary sulfides in sealed evacuated tubes for several weeks. The strontium and barium titanium sulfides were isomorphous and could be indexed by means of hexagonal, orthorhombic or tetragonal unit cells. These compounds were tentatively assigned the hexagonal BaNiO₃ structure (Lander, 1951). However, some serious discrepancies between the calculated and observed intensities were obtained. Barium zirconium sulfide was found to be dimorphic. The allotrope prepared below about 800 °C. was found to be tetragonal with a=4.990, c=5.088 Å and to have a perovskite structure. The high temperature form could not be indexed.

This paper describes the preparation of alkaline earth titanium and zirconium sulfides by the action of CS_2 on the corresponding ternary oxides together with additional observations on their structure.

Experimental

All of the titanates and zirconates used were c.p. grade (TAM Division, National Lcad Company) and

contained less than 0.2% total metallic impurities. Powder patterns of the ternary oxides showed the presence of only the desired phase. The sulfiding procedure was similar to that used for the preparation of ZrS_2 (Clearfield, 1958). Argon was bubbled through a tower containing CS2 and the resultant gas mixture then led into a zircon combustion tube containing 10 g. of the ternary oxide in a carbon boat. The flow rate of the argon was fairly constant so that the amount of CS₂ entering the combustion tube was roughly proportional to the reaction time. Powder patterns were obtained with a G. E. XRD-3 X-ray unit and diffractometer using filtered Cu Ka radiation. Aluminum powder and aluminum oxide were used as internal standards for the determination of accurate unit cell dimensions.

Barium titanium sulfide

The preparation of $BaTiS_3$ was carried out at one hundred degree intervals in the temperature range 400-1100 °C. Only small amounts (up to 30%) of sulfide were obtained in 4 hours time below 700 °C. However, the products obtained in 4 hours reaction time at 700 to 1000 °C. showed only the presence of the single phase $BaTiS_3$. The powder patterns of the 1100 °C. preparations contained some new reflections. Reaction times in the order of 24 hours were required to eliminate or reduce to low values the intensities of these reflections.

136

The powder patterns could be indexed on the basis of either an orthorhombic or hexagonal unit cell. However, the unit cell dimensions changed slightly with temperature of preparation. This is shown in Fig. 1 by the increased resolution of the (200), (002) doublet (hexagonal indexing) as a function of temperature of preparation. In all of the BaTiS₃ samples the *a* axis of the orthorhombic unit cell equaled $\gamma(3)c$ and the *a*-*c* diagonal equaled 2*c* and made an angle of 60° with the *c* axis. Thus, the true unit cells are most probably hexagonal with the dimensions given in Table 1. The values reported by Hahn & Mutschke are included for comparison.

Table 1. Hexagonal unit-cell dimensions of BaTiS₃

no.	preparation	a (Å)	c (Å)
2	700 °C.	6.752 ± 0.006	5.810 ± 0.005
3	1000	6.758 ± 0.008	5.778 ± 0.006
5	1100	$6.77 \pm 0.01 \\ 6.730$	5.74 ± 0.01
Hahn d	& Mutschke		5.829

Analytical data for a number of $BaTiS_3$ preparations are given in Table 2. Each of the products also contained 0.1 to 0.3% insolubles (carbon, silica). The fact that the elemental composition of each sample totaled less than 99.7% indicates that oxygen was incompletely replaced by sulfur. Also, the sulfur deficiency increased with increasing temperature of preparation. Thus, the variation in unit cell dimensions appears to be related to the sulfur content of the products.

The unit cell volumes of all the preparations listed in Table 1 are practically identical and contain 2 molecules of BaTiS₃ based on Hahn & Mutschke's observed density of 4.00 g.cm.⁻³. Integrated intensities were obtained for preparations No. 2 (700°) and No. 3 (1000°) by counting the area under the peaks for the first 6 reflections using the scaler. The intensities for the remaining reflections were estimated by comparison with the measured reflections. Intensity calculations were first made assuming the barium nickelate structure, space group C_{6v}^4 -P6₃mc,

Fig. 1. Effect of temp. of preparation of BaTiS₃ upon the intensity and resolution of (200), (002) doublet.

Table 2. Analytical data for BaTiS,

Sample no.	Reaction temp. (°C.)	Reaction time (hr.)	% Ba	% Ti	% S	S/Ti	S/Ba
1	700	4			33.5	_	
2	700	24	48.25	17.01	34.4	3.02	3.06
3	1000	4	47.82	17.22	33.46	2.90	3.00
4	1000	4	48.65	17.12	33.90	2.96	2.98
5	1100	24	49.78	16.81	$32 \cdot 89$	2.88	2.79
	Required :	for BaTiS ₃	48.80	17.02	34.18	3.00	3.00

ABRAHAM CLEARFIELD

hkl	d_o	d_c	$I_{\rm c} imes 10^{-4}$	$\Sigma I_{c} imes 10^{-4}$	$I_o imes 10^{-4}$	hkl	d_o	d_{c}	$I_c imes 10^{-4}$	$\Sigma I_c imes 10^{-4}$	$I_o \times 10^{-4}$
100	—	5.848	0.5	0.5	0	511		1.034	^{3.0})		
001		5.810	0	0	0	422	1.034B	1.033	9·0 (15.9	16.6
101	4.128	4.122	244	244	237	404	1 0010	1.030	1.0	10 0	10 0
110	3.387	3.377	210	210	215	215)		1.029	2·9 J	• •	
111]	ľ	2.920	0	0		503		1.001	1.6	1.6	0
200	2.924	2.924	$39 \cdot 2$	123	110	305	_	0.9981	0	0	0
002 J	2.906	2.905	84 J			512		0.9878	$2 \cdot 7$	$2 \cdot 7$	0
201	2.614	2.612	415	499	473	324		0.9855	0.02	0.05	0
102 J	2 011	2.602	84)	100		600	0.9749	0.9744	5.6	5 ∙6	9.0
210	2.201	2.210	$\left\{\begin{array}{c}0\cdot4\\0\cdot4\end{array}\right\}$	19.9	19.4	333	_	0.9731	0	0	0
112		2.202	19.5			006	_	0.9683	0.9	0.9	0
211	2.063	2.066	68	172	161	430	—	0.9014	0.1	0.1	0
202 J	1.0.40	2.001	104)	07	97	499	_	0.9013	195)	0	0
300	1.949	1.097	37	37	37	423	0.9594B	0.0587	5.6	18.1	14.6
201		1.937	0	0	0	995		0.0579	0	0	0
301	1.000	1.090	99.4	99.4	10	106		0.0552	1.2	1.2	õ
103	1.759	1.750	49	49	30	431	_	0.9485	2.4	2.4	ŏ
112	1.199	1.680	40	40	30	315	_	0.9446	2.4	2.4	ŏ
990	1.699	1.688	67	67	77	520	0.9368	0.9364	2.9	2.9	4
220	1.099	1.622	07	07		116		0.9308	0.6	õ	ō
221	}	1.621	0~{	0.2	0	521		0.9246	õ	õ	ŏ
302		1.619	6.1			602)		0.9241	4·8)		-
202	1.613	1.615	59.5	65.6	57	513	0.9237B	0.9233	2.2	$7 \cdot 0$	$8 \cdot 5$
200)	1.565	1.562	21	21	17.6	206		0.9192	3.3	3.3	0
400 \	1000	1.462	2.4	21		432	_	0.9127	0.5	0.5	õ
222		1.460	33.3			504		0.9110	Õ	Õ	õ
213	1.459	1.457	14.9	61.9	54	405		0.9097	5.8	5.8	Ō
004		1.452	11.3			610		0.8918	0.02	0.02	0
401		1.418	31.8)			522		0.8913	1.1	1.1	0
312	} 1.417	1.416	14.0	45.8	41.4	334		0.8896	$2 \cdot 7$	2.7	0
104	,	1.410	0.1	0.1	0	216		0.8866	$2 \cdot 2$	$2 \cdot 2$	0
303		1.374	0	0	0	611		0.8815	$2 \cdot 0$	$2 \cdot 0$	0
320		1.342	$0 \cdot 1$	$0 \cdot 1$	0	424		0.8795	1.4	1.4	0
114	1.333	1.334	12.2	12.2	5.8	325		0.8783	$2 \cdot 1$	$2 \cdot 1$	0
321	Ì	1.307	8·9)			603		0.8703	0	0	0
402	1.307B	1.306	13.2	25	26	306		0.8672	0.02	0.02	0
204	ļ	1.302	$2 \cdot 9$			433		0.8611	$2 \cdot 1$	$2 \cdot 1$	0
410	1.277	1.276	10	10	13	415		0.8592	0	0	0
223	—	1.273	0	0	0	612		0.8526	$2 \cdot 1$	$2 \cdot 1$	0
411	1.244	1.247	0)	6.7	5.2	514		0.8511	0.05	0.02	0
313 J	ſ	1.244	6.7∫		• -	440	0.8445	0.8441	4.5	4.5	3.5
322	1.217	1.218	6.7	6.8	5.2	523	_	0.8430	0	0	0
214	ļ	1.214	0·1 J	00	0 -	226		0.8399	4.6	4.6	0
500)	1.120	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$			530		0.8354	0.01	0.00	0
412	$\int 1 \cdot 168B$	1.168	2.5	21.6	$22 \cdot 8$			0.8353	0.01	0.02	0
403	1	1.167	12.7			441)	_	0.0014	0)	0.9	0
304 1)	1.100	0.4)	0	0	007		0.0014	2.3	2.3	0
000		1.102	0	0	0	591)	_	0.8960	9.9)	0	U
105	1.147	1.140	2.3	$4 \cdot 6$	4	701	_	0.8269	$\{\frac{2}{1}, \frac{2}{1}\}$	$3 \cdot 3$	0
200	1.195	1.195	2.5 1	9.7	3.5	505		0.8243	1.1	1.1	0
490 5	1.120	1.105	1.4	2.	00	107		0.8218	1.0	1.0	ŏ
221	1	1.105				620)		0.8110	0.7)		v
292	L 1.102B	1.103	4.0	23.2	17	442		0.8106	4.9		
923 994		1.101	17.8	20 2	.,	613		0.8101	2.4		
115]	1.099				604	0.8095B	0.8094	10.3	21.9	22.7
421	, ,	1.086	18.4			335		0.8084	0		
502		1.086	1.9			406		0.8073	3.6		
314	$\left.\right\} 1.086B$	1.082	ô•1 }	29.6	41	117		0.8060	0	0	0
205	ļ	1.080	9.2			621)		0.8034	11.7)		
413		1.066	0 - /	0	0	702		0.8029	1.3		
510)	1.050	ŏ)	-	-	532	0.00007	0.8029	$1 \cdot 2$	00.0	90.9
332	} —	1.049	0.8	0.8	U	434	0.8036B	0.8017	0	30.0	30.2
	,		.)			425		0.8008	11.1		
						207		0.7985	5.3)		

and the same atomic positions chosen by Hahn & Mutschke (1956). This calculation confirmed the discrepancies noted earlier by these authors. However, when the barium atom parameters were changed to $\frac{1}{3}, \frac{1}{3}, \frac{1}{4}; \frac{1}{3}, \frac{2}{3}, \frac{3}{4}$ the discrepancies disappeared. Plots of log I_o/I_c versus $(\sin \theta/\lambda)^2$ were made for

both the 700° data and the 1000° data. Intensities were then calculated from the equations

$$I_c = m \times LP \times |F_c|^2 \exp -2B (\sin \theta / \lambda)^2$$
$$I_c = S \times I_o$$

where

m = multiplicity LP = Lorentz and polarization factor S = scale factor.

The values of S and B were 4.73×10^4 and 2.61 for sample No. 2 (700° data) and 4.35×10^4 and 3.53 for sample No. 3 (1000° data). A comparison of the observed and calculated intensities for sample No. 2 is given in Table 3. The reliability index, $R = \Sigma(VI_o - VI_c)/\Sigma VI_o$, was 0.11 for the 700° data and 0.16 for the 1000° data. R was calculated using half the least observable value of I_o for the unobserved reflections.

coordinated by sulfur atoms. Each barium atom is surrounded by 12 sulfur atoms in a hexagonal close packed arrangement. The interatomic distances for the 700° preparation are given in Table 4. The primed sulfur atoms refer to those lying in planes above and below the barium atom while the unprimed ones lie in the same plane as the barium atom.

Table 4. Interatomic distances in BaTiS₃

6 Ti–S	2∙43 Å
6 Ba–S	3.38
6 Ba–S ¹	3.49

Table 5. Variation in intensities of $BaTiS_3$ with temperature of preparation

		Io	
	Prep. no. 2	Prep. no. 3	Prep. no. 5
hkl	(700°)	(1000°)	(1100°)
101	237	234	207B
200	44	42	38
002	66	45	42B
$\left. \begin{array}{c} 201 \\ 102 \end{array} \right\}$	473	430	398
103 Ó	19	26	33
220	77	75	64
$\left.\begin{array}{c}302\\203\end{array}\right\}$	57	50	34B
114 ´	$5 \cdot 8B$		
$\left. \begin{array}{c} 412 \\ 403 \\ 304 \end{array} \right\}$	$22 \cdot 8B$	10B	6B

B denotes broadened reflections.

Fig. 2. Unit cell of BaTiS₃ projected onto (001) plane.

A projection of the unit cell onto the (001) plane is shown in Fig. 2. Each titanium atom is octahedrally The reason for the poorer agreement obtained with the higher temperature data became apparent upon examination of the differences in the powder patterns of the several preparations. Many reflections for which l is not zero become broadened and undergo large

•.• •

Table 6. Products obtained on reacting $BaZrO_3$ with CS_2 at several different temperatures

				γ_0 composition of product			
Reaction temp. (°C.)	Reaction time (hr.)	Color of product	Sulfur content (%)	BaZrO ₃	BaZrS ₃	Unknown phase	
500	4	light orange		100		_	
500	12	orange		85	15	0	
600	4	orange	2.45	100	0	0	
600	12	red	7.05	80	20	0	
700	4	orange	4.18	88	12	0	
750	4	red	9.65	68	25	7	
750	18	violet	_	15	75	10	
800	4	maroon	15.3	40	40	15	
900	4	violet	$21 \cdot 18$	20	70	10	
1000	4	grev-black	$27 \cdot 10$	0	100	Õ	
1050	4	blue-black	28.60	Ō	100	ŏ	
1050	24	blue-black	29.60	ŏ	100	ŏ	
Required f	or BaZrS.		29.52	•		Ũ	

Table 7. Analytical data for alkaline earth zirconium sulfides

~ ,	Reaction	Reaction			Found			Required	
Compound	temp. (°C.)	time (hr.)	Color	A^{2+}	\mathbf{Zr}	\mathbf{s}	A^{2+}	\mathbf{Zr}	\mathbf{s}
$egin{array}{l} { m BaZrS_3} \\ { m SrZrS_3} \\ { m CaZrS_3} \end{array}$	$1050 \\ 1000 \\ 1150$	$\begin{array}{r} 4\\24-30\\24\end{array}$	Blue-black Violet Black	$42 \cdot 10 \\ 31 \cdot 66 \\ 17 \cdot 7$	28·10 33·45 39·5	$28.60 \\ 33.75 \\ 42.0$	$42 \cdot 16 \\ 31 \cdot 74 \\ 17 \cdot 54$	$28 \cdot 32 \\ 33 \cdot 41 \\ 40 \cdot 37$	$29.52 \\ 34.84 \\ 42.09$

changes in relative intensity with increased temperature of preparation. However, the hk0 reflections remain sharp, and their intensities change only slightly. This is shown in Fig. 1 for the (200) and (002) reflections and by the data in Table 5. The intensities were placed on the same scale by assuming that the intensity of the (110) reflection was constant in all the patterns.

Symmetry requirements permit only variations in the x and z parameters of the sulfur atoms and the z parameters of the other atoms. The intensity data indicate that only changes in the z parameters need be considered. The origin was fixed at a titanium atom and the effect of variations in the z parameters of the barium and sulfur atoms upon the calculated intensities was ascertained. The intensity changes listed in Table 5 could not be accounted for, even qualitatively, unless it was assumed that the Bcomponent of the structure factors was greatly decreased. This observation and the broadening of the reflections for which l is not zero suggests that the structure becomes increasingly disordered with increasing temperature of preparation, *i.e.* with increasing sulfur deficiency.

Alkaline earth zirconium sulfides

Barium zirconate was allowed to react with CS_2 in the temperature range 500–1350 °C. for different lengths of time. Below 1000 °C. highly colored products of varying sulfur content were obtained. These products consisted of mixtures of BaZrO₃, BaZrS₃ and an unidentified phase in the proportions shown in Table 6. The per cent composition of each product was determined by comparing the intensities of several reflections of pure BaZrO₃ and BaZrS₃ with their values in the mixtures.

Samples of BaZrS₃ prepared in the temperature range 950–1200 °C. and 4 to 24 hours reaction time gave identical X-ray diffraction patterns although their sulfur contents varied from 27% to 29.6%. The powder pattern (Table 8) was indexed on the basis of an orthorhombic unit cell with

$$a = 7.037, b = 9.983, c = 7.050 \text{ Å}$$
.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		BaZrS	3			SrZr	S_3			CaZrS ₃	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	hkl		d_c	$\overline{I/I_0}$	hkl	do	d_c	$\overline{I/I_0}$	$\overline{d_o}$	d_c	I/I_0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	111	4.461	4.457	4	200	_			6.53	6.53	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	121)		3.526		201				5.83	5.92	12
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	002	$3.528 \pm$	3.525	100	012	5.84	5.76	5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200		3 ∙519)		020	4.901	4.894	12	4.795	$4.790 \\ 4.785 $	80
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.007		202		4.601		_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	012	3.325	3.325	4	300	$4 \cdot 548B$	$4.001 \\ 4.497 $	4	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	102)	0.140	3.151	0	121	4.999	4 ∙378 ∖	15	4.282	4·282	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	201	3.149	3.148 ≬	Z	212	4.902	4.380 ∫	10	1 202	4.280 ∫	Ŭ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	130 í		3·008 j		004	3.561	3.560	23	3.512	3.512	25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112	2.998	3.005	5	222	3.463	$3 \cdot 463$	100	3.386	3.386	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	211		3.003		400	3.373	3.373	30	3.274	3.267	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	022)	0.074	2.879	10	014	3.343	3.346	10	—		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	220	$2.874 \pm$	2.876	18	401	—	—		3.160	3.183	18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	131 ´	2.768	2·767 ́	4	130		3.172			3.102	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	122)	0.000	2.665		204	3.168	3.150	4	3.090	3.093	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	221	2.668	2.663	3	410		3·189 🕽			3∙092 J	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	040 j	0.405.	2·496)́	00	402	3.050	3.050	3	2.961	2.963	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	202	$2.495 \pm$	2.490	60	214	2.998	2.995	3	2.946	2.944	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		,		230	2.927	2.937	20	2.868	2.869	22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	032)		2.420)	~	412	0.010	2.910	20		2.831	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	212	$2 \cdot 4 19$	2.416	5	132	2.912	2.896 ∫	20	2.826	2.837	80
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	132		2.288		024	0.055	2·879)	0		2·833 J	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	231	2.286	2.287	1	231	2.877	2.876 ∫	2			
$ \begin{vmatrix} 141 \\ 103 \\ 222 \\ 301 \end{vmatrix} 2 \cdot 234 \neq 2 \cdot 229 \\ 2 \cdot 234 \neq 2 \cdot 229 \\ 2 \cdot 228 \\ 2 \cdot 225 \end{vmatrix} 1 \begin{vmatrix} 304 \\ 220 \\ 222 \\ 222 \\ 222 \\ 22711 \\ 232 \\ 232 \\ 232 \\ 232 \\ 232 \\ 2712 \\ 2717 \\ 2 \cdot 177 \\ 2 \cdot 176 \\ 311 \end{vmatrix} 2 \cdot 177 \\ 2 \cdot 177 \\ 2 \cdot 176 \\ 2 \cdot 173 \\ 2 \cdot 177 \\ 2 \cdot 176 \\ 2 \cdot 173 \\ 2 \cdot 177 \\ 2 \cdot 173 \\ 2 \cdot 177 \\ 2 \cdot 176 \\ 2 \cdot 036 \\ 2 \cdot 0$	310	2 200	2.284	-	124	_	´		2.763	2.768	20
$ \begin{vmatrix} 1.1 \\ 103 \\ 222 \\ 301 \end{vmatrix} = 2 \cdot 234 \neq 2 \cdot 229 \\ 2 \cdot 234 \neq 2 \cdot 229 \\ 2 \cdot 225 \end{vmatrix} = 1 \qquad \begin{vmatrix} 420 \\ 323 \\ 2 \cdot 225 \\ 232 \\ 2 \cdot 712 \\ 2 \cdot 717 \\ 2 \cdot 77 \\ 2 \cdot 717 \\ 2 \cdot 641 \\ 4 \\ 2 \cdot 641 \\ 2 \cdot 64$	141		2.232		304	2.791	2.792	10	_	—	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	103		2.229		420	2.781	2.777	10	_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	222	$2 \cdot 234 \neq$	2.228	> 1	323		2.717)	10	0.655	2.655)	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	301		2.225		232	2.712	2.715	12	2.035	2.656 ∫	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	113)		2.176		115	2.677	2.681	6	_		
$ \begin{vmatrix} 377 \\ 942 \\ 240 \\ 123 \\ 321 \end{vmatrix} 2 \cdot 036 \neq 2 \cdot 036 \\ 2 \cdot 036 \Rightarrow 2 \cdot 036 \\ 2$		$2 \cdot 177$	2.173	· 5	500				2.614	2.614	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	042		2.037		224		2.649)	0	2.596	2.599	14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	240		2.036		413	2.647	2.647	0	_	—	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	192	$2.036 \pm$	2.036	$\rightarrow 50$	110						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	321		2.033		422	2.587	2.587	5	0 700	2.520	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	150 \		1.021		510				2.520	2.521 ∫	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	212		1.018		215	2.532	2.535	7	_	_ `	
1010 1000 1000	330	1.918	1.017	} 1	040		2.447)	- 0	0.000	2 ·395)	66
	312		1.916		404	2.447	2.448	70	2.393	2·393 ∫	· 00

Table 8. Powder patterns of the alkaline earth zirconium sulfides

ţ

				Tab	ole 8 (cont.)				
	BaZr	S ₃			SrZ	rS ₃			$CaZrS_3$
hkl	d_o		$\overline{I/I}_0$	hkl	do	d_c	I/I_0	$\overline{d_o}$	d_c I/I_0
131 133 331	1.855	1.853 1.852 1.850	3	041 305 034	9.409	2.405	10	2.361	$ \begin{array}{c} 2 \cdot 361 \\ 2 \cdot 361 \\ 2 \cdot 363 \\ 2 \cdot 363 \end{array} $ 12
242 004 400	$1.763 \pm$	$\left. \begin{array}{c} 1.763 \\ 1.762 \\ 1.759 \end{array} \right\}$	28	140 141 414	2.402	2.408 2.374	10	2.320	$2 \cdot 324$ 12
052)	1 500	1.737)		006 234	2.373	2.370 2.373 2.266	15		2.320)
014 j	1.738	1.735 }	2	241 206	2·266 2·236	$\left\{\begin{array}{c} 2 \cdot 266 \\ 2 \cdot 240 \end{array}\right\}$	$\frac{2}{15}$	2.204	$\frac{-}{2\cdot 204}$ 32
$\begin{array}{c}152\\251\\233\end{array}$		1.687 1.686 1.685		600 432 216				2.173	$\left.\begin{array}{c}2\cdot178\\2\cdot172\end{array}\right\} 4$
$\begin{array}{c}114\\332\end{array}$	> 1.684	1.685 1.684	3	424 242	2.183	$2 \cdot 183$ $2 \cdot 190$ $2 \cdot 189$	25	2.144	$2 \cdot 148$ $2 \cdot 141$ 55 $2 \cdot 142$
411 J 313	1.638	1.682 J 1.638	2	602 612	2.147 2.089	2.145 2.095	5 5	2·082	2.081 5
$ \begin{array}{c} 101 \\ 204 \\ 323 \end{array} $	• 1·576≠	1.578 1.576 1.575	15	530 342 531	2.060	2.080 2.058	2		
$\begin{pmatrix} 402 \\ 252 \\ 034 \end{pmatrix}$		1.574) 1.558 1.557)		226 007 603	2.030	2.036 2.036 2.035 2.032	10	1.998	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\left\{\begin{array}{c} 214\\ 412 \end{array}\right\}$	• 1•557	$1.556 \\ 1.555 $	4	004 107 620	2.011	$\left. \begin{array}{c} 2 \cdot 032 \\ 2 \cdot 016 \\ 2 \cdot 012 \end{array} \right\}$	15	1.980	$1.975 \\ 1.979 \\ 1.984 \\ 25$
$\left. \begin{array}{c} 153 \\ 351 \\ 333 \end{array} \right\}$	1.485	$\left. \begin{array}{c} 1 \cdot 487 \\ 1 \cdot 486 \\ 1 \cdot 485 \end{array} \right\}$	4	$117 \\ 440 \\ 613$	1.975	$\left.\begin{array}{c} 1\cdot 971\\ 1\cdot 981\end{array}\right\}$	20	1.933	$\left. \begin{array}{c} 1.983 \\ 1.932 \\ 1.935 \end{array} \right\} 15$
$ \begin{array}{c} 044 \\ 440 \\ 234 \\ \end{array} $	l·439≠	1.439 1.438 1.424	8	$\begin{array}{c} 622\\ 441\\ 434\end{array}$	1.070	$1.962 \\ 1.962 \\ 1.959$			1.908 1.914 1.915
$\begin{array}{c} 432 \\ 115 \\ 171 \end{array}$	1.370	$\left. \begin{array}{c} 1 \cdot 423 \\ 1 \cdot 372 \\ 1 \cdot 371 \end{array} \right\}$	3 2	343 050 505	1.998	1·958 1·957 1·595	45	1.908	1.915 50 1.916 1.914
511 J $125 \\ 361$		1.367		406	1.879		7	1.847	1·903) 2
163 244 442	1 ∙ 3 31 ≠	1·333 1·332 1·331	18		1·748 1·727 1·685		4 20 4	1.829 1.816 1.801 1.755	3 3 4 3
521 135 353 521	1.277	1.330 1.279 1.277	I		1.662 <i>B</i> 1.647 1.545		5 10 13	1·743 1·694 1·649	3 20 7
$ \begin{array}{c} 080\\ 404\\ 082\\ \end{array} $	$1.245 \pm$	1.275 1.248 1.245	2		1·524 1·496 1·415		7 5 5	1.630 1.623 1.609	14 14 4
280 325 363	$1.175 \pm$	1·176 1·176 1·176 1·175	8		1.388 1.373 1.320 1.316		6 2 3 4	1·580 1·544 1·520 1·515	5 7 7 12
$\left\{\begin{array}{c} 523\\600\end{array}\right\}$	l·173≠	1.175) 1.174 } 1.173 }	8		1.314 1.297 1.296		4 7 8	1·495 1·476	4
282 206)	1.116	1·116 1·114	4		$1 \cdot 293$ $1 \cdot 278$		7 7 7	1.471 1.414 1.392	10
444 ∫ 602	1.114 = 1.112 =	1·114 ∮ 1·113	5 4		$1.275 \\ 1.209$		4 6	$1.380 \\ 1.374$	4 4 3
$\left.\begin{array}{c} 074\\ 036\\ 216 \end{array}\right\}$	1.108	$\left. \begin{array}{c} 1 \cdot 108 \\ 1 \cdot 108 \\ 1 \cdot 107 \end{array} \right\}$	2		$1.205 \\ 1.201 \\ 1.199$		3 5 3	1·328 1·266 1·262	4 5 10
$\left. \begin{array}{c} 345 \\ 183 \\ 381 \\ 226 \end{array} \right\}$	1.088	$1.089 \\ 1.089 \\ 1.088 \\ 1.08$	1		1·185 1·183 1·154		3 4 4	$1 \cdot 152$ $1 \cdot 138$ $1 \cdot 134$	4 3 3
543 622		1.088 1.087 1.086			1·152 1·148 1·139		7 6 5	$1 \cdot 129 \\ 1 \cdot 125 \\ 1 \cdot 116$	3 3 2

ABRAHAM CLEARFIELD

Table 8 (cont.)

 d_o

 $\begin{array}{c} 1.131\\ 1.123\\ 1.093\\ 1.090\\ 1.078\\ 1.043\\ 1.029\\ 1.004\\ 1.000\\ 0.9761\\ 0.9778\\ 0.9557\\ 0.9554\\ 0.9553\\ 0.94526\\ 0.9503\\ 0.9358\\ 0.9319\\ 0.9289\\ 0.9289\\ 0.9216\\ 0.9216\\ 0.9179\\ 0.885\end{array}$

ĥkl

 $SrZrS_3$

 d_c

.

	$BaZrS_3$		
ĥkl		d_c	I/I_0
373)	1.080	1.082	1
191 ∫	1.030	1.083 ∫	
$\begin{pmatrix} 165\\046 \end{pmatrix}$		1.064 1.063	
561	$1.061 \pm$	1.062	5
640)		1.061	
$\frac{092}{100}$		1.058	
472	1.058	1.057	5
454		1.056	
553	1.099	1.033	1
265 ∫	1.032	1.030 ∫	I
	1.017 +	1.018	4
246	1.017 +	1.018	4
642	$1.015 \pm$	1.016	4
292	1.013	1.013	4
056 J	0.0089	1.012 J	1
175	0.9982	0.9933	
193	0.9933	0.9930	2
391		0·9928 J	
117 515	0.0019	0.0021	9
571	0.9910	0.9921 0.9918	4
1,10,1		0.9789	
365		0.9785	
	$0.9784B \pm$	0.9782	7
127		0.9777	
525		0.9777	
563		0.9773	
$\frac{406}{604}$	$0.9768B \neq$	0.9770	10
256	0.9738	0.9702) 0.9732)	
652	0.9720	0.9716	8
185	0.9271	0.9270	1
2,10,2 J	00201	0.9266 J	-
266		0.9259 0.9259	
581	0.9256	0.9256	1
307		0.9254	
662 J 875)		0.02250)	
393	0.9224	0.9220 0.9222	1
1,10,3	0.0110	0.9111	4
3,10,1 ∫	0.9110	0.9109 ∫	*
446 644		0.9098	
723 (0.9083	0.9082	5
294		0·9070 J	
(3,10,3)		$\left(\begin{array}{c} 0.8555 \\ 0.8554 \end{array} \right)$	
565	0.8558	0.8554 (4
167		0.8552	
802)	0.8532	0∙8535)	5
2,11,2 J	0 0002	0.8527 J	0
0,12,0	0.8293	0.8319	23
494	0.8285	0.8281	3
575)		0.8171	
717 (509 }	0.8166	0.8171	3
715		0.8163	
0,12,2)	0.8004	0.8097	. 1
2,12,0 5	0.0094	0.8096 ∫	т
$\begin{array}{c} 842 \\ 0.114 \end{array}$	0.8072	0.8075	6
2,12,2	0.7888	0.7890	2
804	0.7866	0.7870	3

	CaZrS ₃
do	d_c
1.111	

1/I₀ 7

The unit cell contains 4 BaZrS₃ units based on the density of 4.23 g.cm.⁻³ reported by Hahn & Mutschke for their preparation. The systematic absences are (hk0) for h+k odd and (0kl) for l odd. Thus, the space group is either D_{2h}^{16} -Pnmc or C_{2v}^{9} -Pnc2₁. The reflections marked with an \pm in Table 8 can be indexed on the basis of a tetragonal cell with $a \cong \frac{1}{2} \sqrt{(2)} a_t \cong \frac{1}{2} \sqrt{(2)} c_t$ and $c = \frac{1}{2}b_t$, where the subscript t refers to the true unit cell dimensions. These reflections correspond very nearly in position and intensity to those expected for an ideal perovskite structure. Thus, barium zirconium sulfide must have a distorted perovskite structure probably similar to that of CaTiO₃ (Kay & Bailey, 1957) or GdFeO₃ (Geller, 1956). The difference in structure between the barium zirconium sulfide obtained in this study and that reported by Hahn & Mutschke may again be due to a sulfur deficiency resulting from the present method of synthesis.

Attempts to obtain a high temperature modification of $BaZrS_3$ were unsuccessful. Only mixtures of BaS, ZrS_2 and the $BaZrS_3$ phase described above were obtained when the reaction was carried out above 1200 °C.

Strontium and calcium zirconium sulfides were prepared from the corresponding ternary oxides at 1000-1200 °C. Below 1000 °C. mixtures of binary oxides and sulfides together with small amounts of ternary oxide and sulfide phases were obtained. Usually, complete reaction was achieved in 24 hours as shown by the analyses in Table 7 and the constancy of the X-ray patterns on longer reaction. The powder patterns are given in Table 8. It was possible to index the patterns on the basis of orthorhombic unit cells with the following dimensions:

	a	ь	c
SrZrS ₃	13·49 Å	9·79 Å	14·23 Å
CaZrS ₃	13.07	9.58	14.05

The unit cells contain 16 molecules based on measured densities of 3.85 g.cm.⁻³ for SrZrS₃ and 3.33 g.cm.⁻³ for CaZrS₃. The space groups of these compounds could not be determined because the large unit cell dimensions do not permit unambiguous indexing. However, the similarity of the powder patterns to that of barium zirconium sulfide indicates that SrZrS₃ and CaZrS₃ have highly distorted multiplecell perovskite structures.

The author wishes to express his sincere thanks to Mr M. J. Franey for his excellent technical assistance, and to the Titanium Alloy control lab for the analytical determinations.

References

CLEARFIELD, A. (1958). J. Amer. Chem. Soc. 80, 6511.

GELLER, S. (1956). J. Chem. Phys. 24, 1236.

HAHN, H. & MUTSCHKE, U. (1956). Z. anorg. Chemie, 288, 269.

KAY, H. F. & BAILEY, P. C. (1957). Acta Cryst. 10, 219. LANDER, J. J. (1951). Acta Cryst. 4, 148.

Acta Cryst. (1963). 16, 142

A Rapid Method of Obtaining the Third Set of Coordinates in a Crystal Structure Analysis

By S. G. G. MACDONALD

Physics Department, University College of the West Indies, Kingston 7, Jamaica

(Received 10 April 1962)

When two of the coordinates of the atoms in the unit cell of a centrosymmetric crystal have been obtained by finding the projection of the electron density down one of the principal axes, the coordinates in the third direction are sometimes difficult to obtain without a tedious trial-and-error process. The following paper gives a simple method of determining the signs of the larger structure factors for a second projection and hence obtaining the third set of coordinates. The method appears to be useful as long as the number of atoms in the unit cell is no more than fifty to sixty.

Theory

In a centrosymmetric crystal, any structure factor has the form

$$F(h, k, l) = 2 \sum_{j=1}^{N/2} f_j(h, k, l) \cos 2\pi (hx_j + ky_j + lz_j) .$$
(1)

In two dimensions and more suitable form, it becomes

$$F(h, k, 0) = 2 \sum_{j=1}^{N/2} f_j(h, k, 0) \left(\cos 2\pi h x_j \cos 2\pi k y_j - \sin 2\pi h x_j \sin 2\pi k y_j\right).$$
(2)

If the x_j coordinates are as yet undetermined but the y_j coordinates are known, |F(h, k, 0)| and the factors $f_j(h, k, 0) \cos 2\pi k y_j$ and $f_j(h, k, 0) \sin 2\pi k y_j$ are known quantities. A series of simultaneous equations is ob-